A 80-year-old male patient was admitted to our hospital with fever and increased serum inflammatory markers (erythrocyte sedimentation rate, C-reactive protein and leucocyte count). The patient underwent fluorine-18 fluorodeoxyglucose positron emission tomography / computed tomography angiography (\(^{18}\text{F-FDG PET/CTA}\)) for suspected large vessel vasculitis (LVV). The patient was instructed to fast for at least 6 h prior to radiopharmaceutical administration.

CTA was normal whereas \(^{18}\text{F-FDG PET}\) showed areas of increased glucose metabolism in the cervical region, corresponding to both vertebral arteries on hybrid PET/CTA images (fig. 1). Therefore a diagnosis of LVV limited to the vertebral arteries was hypothesised.

Based on these findings, the patient received corticosteroid therapy with normalisation of symptoms and laboratory data.

\(^{18}\text{F-FDG PET/CTA}\) is a useful imaging method in the initial diagnosis of LVV and in the assessment of activity and extent of disease \([1–3]\)\. This hybrid imaging method may even detect LVV limited to specific arteries. Atherosclerotic vascular uptake may be a source of false positivity in LVV evaluation with \(^{18}\text{F-FDG PET}\), despite a classical patchy uptake pattern; vascular inflammation in LVV classically appears as a smooth linear pattern on \(^{18}\text{F-FDG PET}\) [2]. CTA detecting structural changes in large vessels may also be helpful to differentiate LVV and atherosclerosis [2].

Disclosure statement
The authors declare no financial support and no potential conflict of interest relevant to this article.

References
2. Slart RHJA; Writing group; Reviewer group; Members of EANM Cardiovascular; Members of EANM Infection & Inflammation; Members of Committees, SNM/M Cardiovascular; Members of Council, PET Interest Group; Members of ASNC; EANM Committee Coordinator. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNM/M, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45(7):1250–69. doi: http://dx.doi.org/10.1007/s00259-018-3973-8. PubMed.
Figure 1: Three-dimensional reconstruction of CTA (A), summary 18F-FDG PET image (B) and hybrid PET/CTA images in axial (C), coronal (D) and sagittal (E) projection. CTA was normal whereas 18F-FDG PET showed areas of increased uptake corresponding to the vertebral arteries (arrows), thus demonstrating vasculitis limited to these arteries.